带您了解ADI数字健康生物传感器系列

YI XIN

ADI中国技术支持中心

400-6100-006 CIC.CHINA@ANALOG.COM

绪论

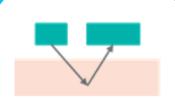
AHEAD OF WHAT'S POSSIBLE™

ADI数字健康生物传感器

远程疾病监护

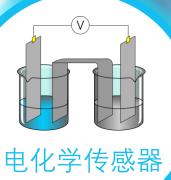
疾病预防

慢性病管理

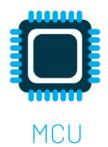


VSM (生命体征监控)

ADI数字健康生物传感器



生物电势传 感器


光学传感器

ADI数字健康生物传感器

生物电势传感器 (ECG/BioZ)

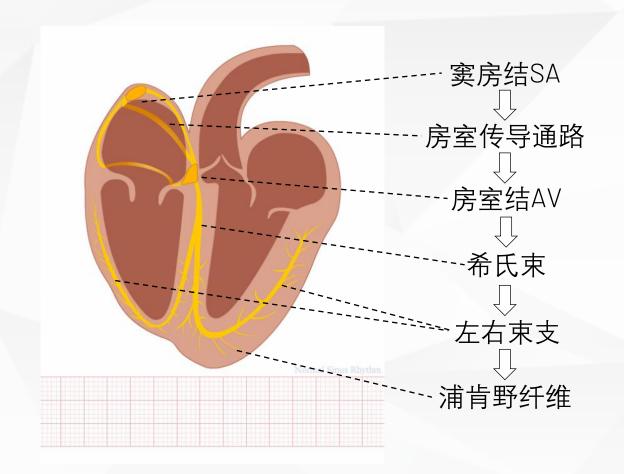
心率/心率变异性 (HR/HRV) 皮肤电反应/皮肤电分析 (GSR/EDA) 生物电阻抗分析/生物电阻抗谱 (BIA/BIS) 心阻抗图 (ICG) 呼吸 (Respiration)

光学传感器 (PPG)

心率/心率变异性 (HR/HRV) 呼吸 (Respiration) 血氧饱和度 (Sp02) 血压趋势 (BPT)

电化学传感器 (血糖)

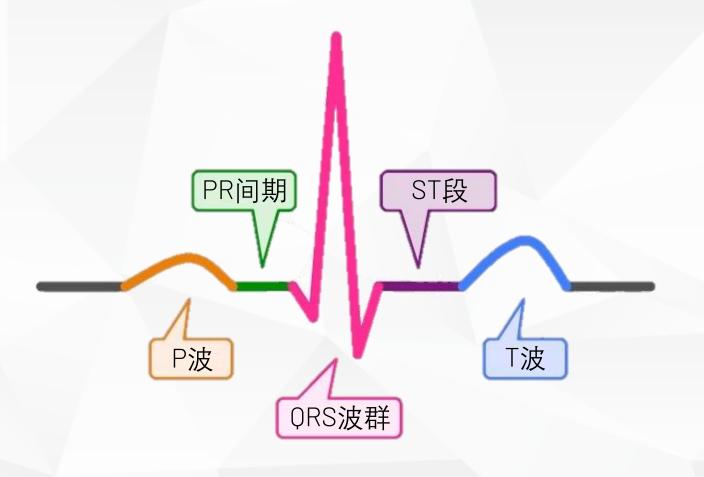
体表温度传感器 (体表温度)

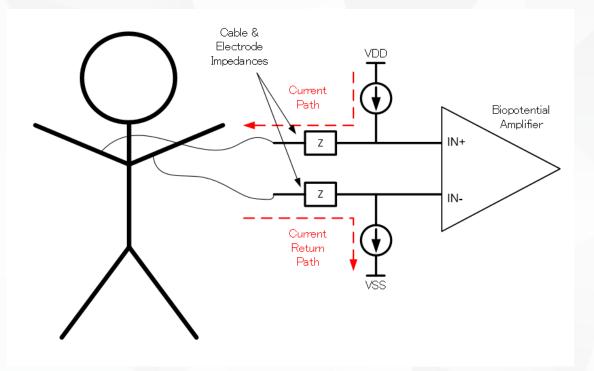


生命体征测量原理

AHEAD OF WHAT'S POSSIBLE™

- ECG (Electrocardiogram) 是利用心电图机记录心脏活动所产生的电信号变化图形的技术, 又称为EKG
- ► ECG信号起源于心脏的特殊组织窦房结,经过 特殊传导通路传导至心脏各部位
- ECG信号是各部位心肌动作电位的总和, 当心 肌规律性收缩和放松时, 离子在心肌细胞内外 来回规律移动产生电位差, 在体表呈现周期性 的电位变化
- ▶心电图纸横轴代表时间,单位为s,纵轴代表 振幅,单位为mV
- 每个小方格为1mm×1mm, 代表0.04s×0.1mV

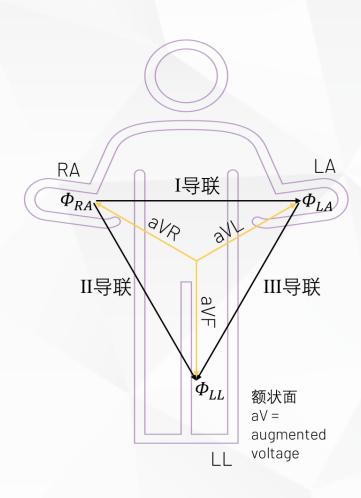




RR间期可用来计算心率

▶ 正常心率范围: 60~100次/min

▶正常心电电压: mV级


心电为差分信号,在人体不同部位放置电极,并通过导联线与心电图机的正负端相连,这种记录心电信号的电路连接方法称为心电图的导联

干电极: 不锈钢

湿电极: Ag/AgCI凝胶电极

常规12导联体系

- 3路标准肢体导联: I、II、III

$$V_{I} = \Phi_{LA} - \Phi_{RA}$$

$$V_{II} = \Phi_{LL} - \Phi_{RA}$$

$$V_{III} = \Phi_{LL} - \Phi_{LA}$$

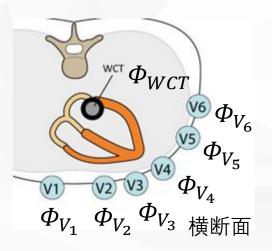
- 6路胸导联: V1、V2、V3、V4、V5、V6

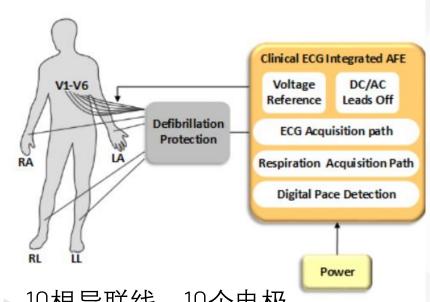
$$\Phi_{WCT} = \frac{1}{3} (\Phi_{RA} + \Phi_{LA} + \Phi_{LL}) (威尔逊中心电位)$$

$$V_{V_1} = \Phi_{V_1} - \Phi_{WCT}$$

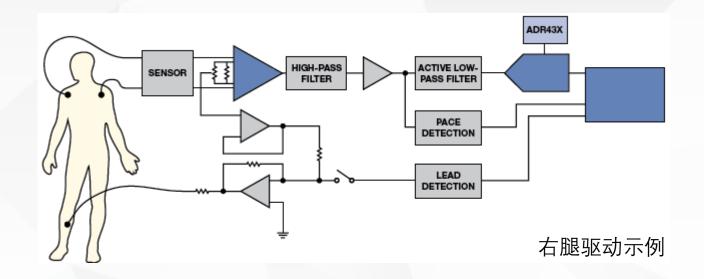
$$V_{V_2} = \Phi_{V_2} - \Phi_{WCT}$$

•


$$V_{V_6} = \Phi_{V_6} - \Phi_{WCT}$$


- 3路加压肢体导联: aVR、aVL、aVF

$$V_{aVR} = \Phi_{RA} - \frac{1}{2}(\Phi_{LA} + \Phi_{LL})$$


$$V_{aVL} = \Phi_{LA} - \frac{1}{2}(\Phi_{RA} + \Phi_{LL})$$

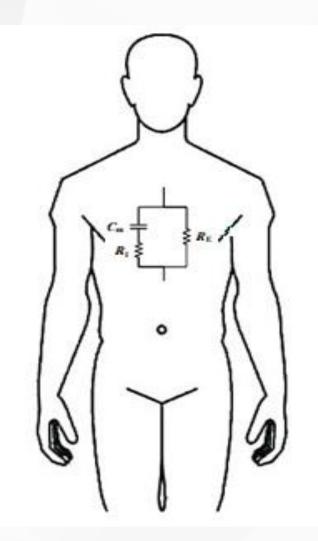
$$V_{aVF} = \Phi_{LL} - \frac{1}{2}(\Phi_{RA} + \Phi_{LA})$$

- 10根导联线、10个电极
 - 胸部1~6
 - 左臂LA、右臂RA、左腿LL
 - 右腿RL
- 右腿驱动 (Right Leg Drive, RLD)
 - 将心电差分信号的共模干扰提取放大并反向施加到人体上
 - 抑制工频干扰
 - 右腿效果最佳

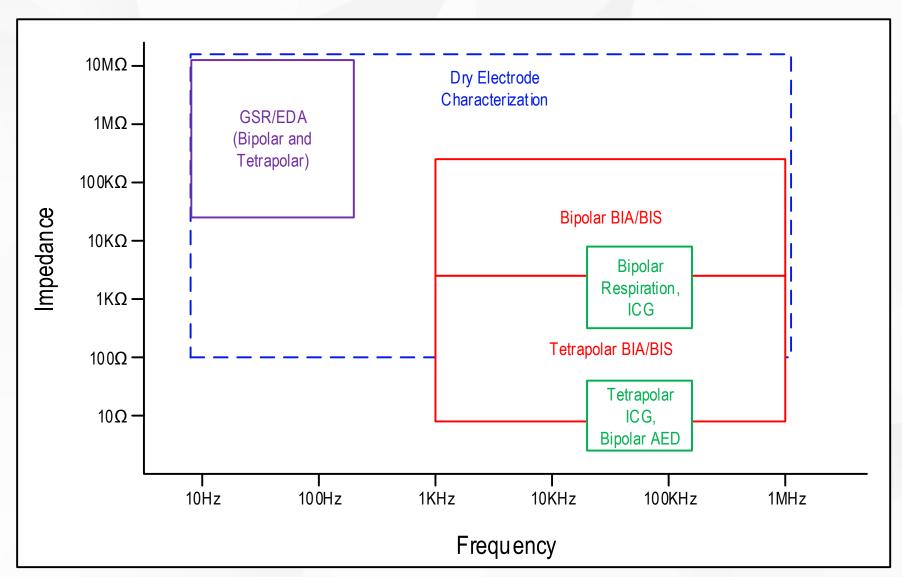
BIOZ测量原理

皮肤电分析/皮肤电反应

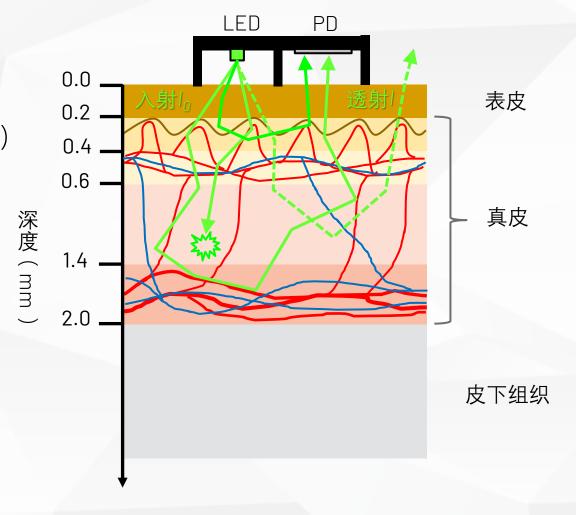
生物电阻抗谱/ 生物电阻抗分析

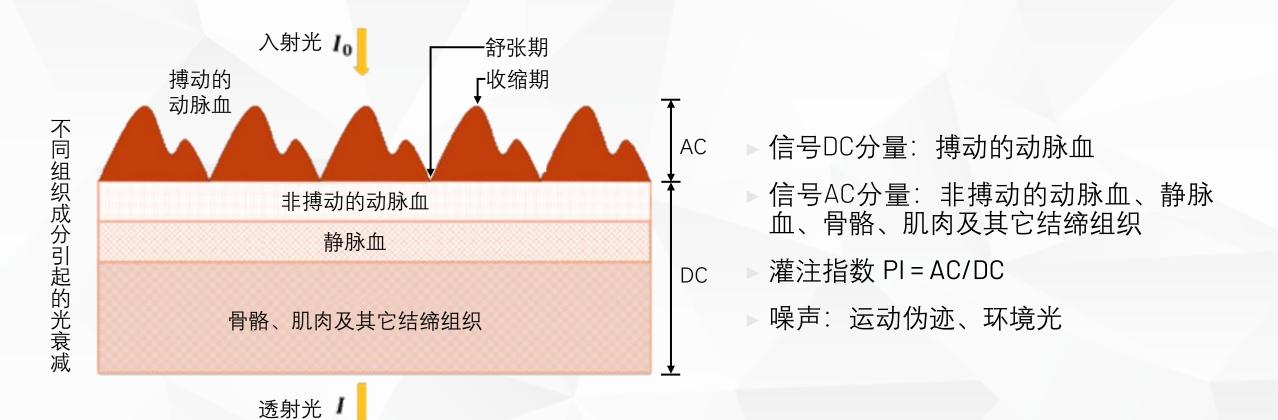


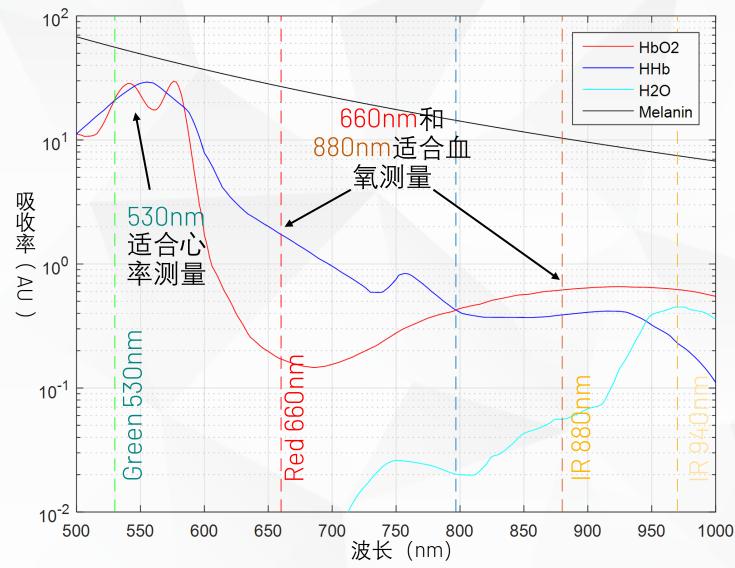
心阻抗图



呼吸





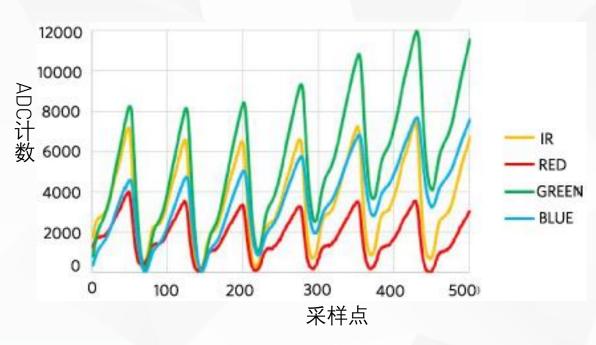

BIOZ测量原理

- PPG(Photoplethysmography)叫做光学体积描记法,指的是使用光学信号测量组织中的血管体(容)积的一种测量方法,其波形叫做光电容积脉搏波
- Photo指的是光学测量
- Plethysmography指的是对组织体(容)积变化的一种测量方法
- PPG测量系统
 - 发光二极管 LED
 - 光电二极管 PD
 - 模拟前端 AFE
- Beer-Lambert定律描述了光的衰减与光所穿过的物质的特性的关系
 - $I = I_0 e^{-\varepsilon(\lambda)Cd}$
 - $A = ln\left(\frac{I_0}{I}\right) = \varepsilon(\lambda)Cd$
 - 其中A为衰减, I_0 为入射光强度,I为透射(接收)光强度, $arepsilon(\lambda)$ 为物质的摩尔消光系数,C为物质浓度,d 为光路长度

Hb02: 氧合血红蛋白 Oxyhemoglobin

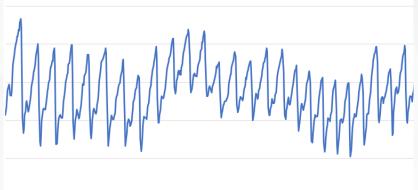
HHb: 脱氧血红蛋白 Deoxyhemoglobin

H20: 水

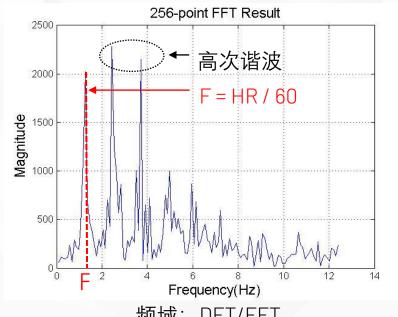

Melanin: 黑色素

Green 绿光

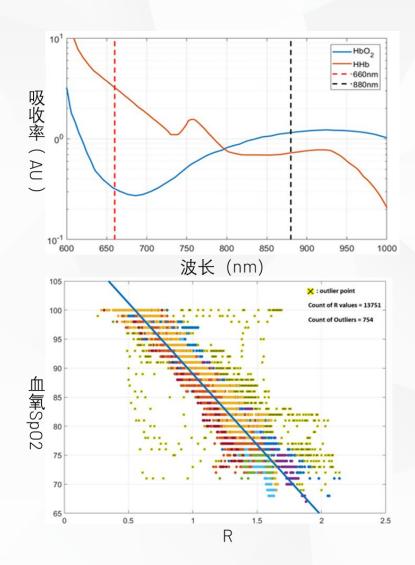
相比于红光和红外光,皮肤对绿光的吸收率更高,并且绿光对运动更不敏感,因此530nm的绿光通常用于心率的测量


Red 红光 & IR 红外光

氧合血红蛋白 (HbO2) 能吸收更多的红外光, 而脱氧血红蛋白 (HHb) 能吸收更多的红光; 因此880nm的红外光和660nm的红光通常用于血氧的测量



不同波长下的PPG信号 (相同LED驱动电流)

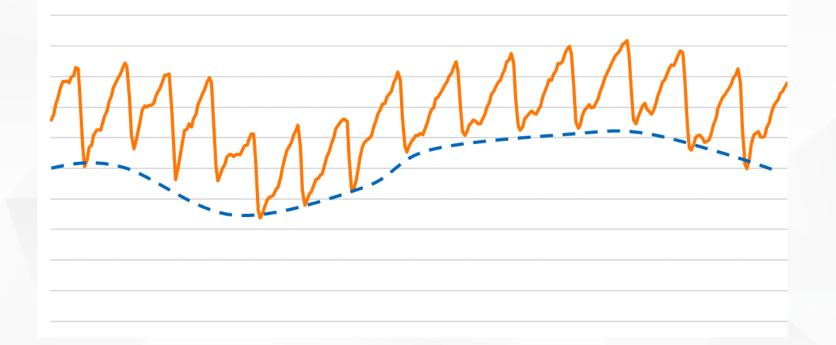

- 心率(HR)指的是每分钟心脏搏动的次数
- 应用: 心功能监测、运动监测

峰值检测/过零检测

频域: DFT/FFT

- 血氧(Sp02)指的是血液中的氧合血红蛋白占全部可结合的血红蛋白(包括氧合血红蛋白和脱氧血红蛋白)的比例,是反映肺功能的重要指标,血氧一般不应低于90%
- 定义式

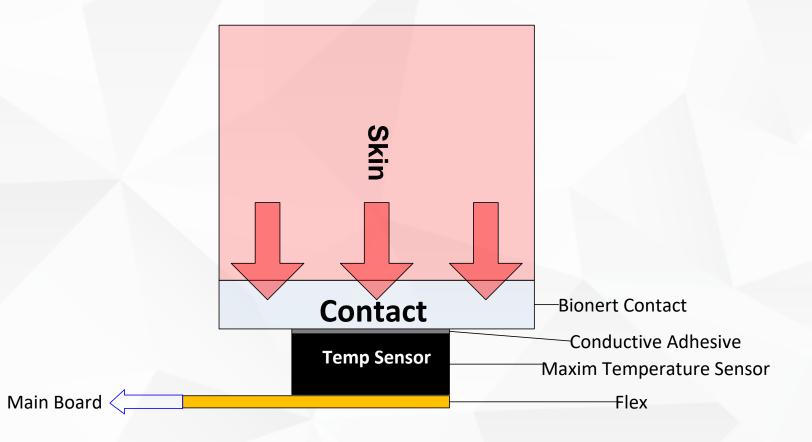
$$SpO_2 = \frac{c_{HbO_2}}{c_{HbO_2} + c_{HHb}} \times 100\%$$

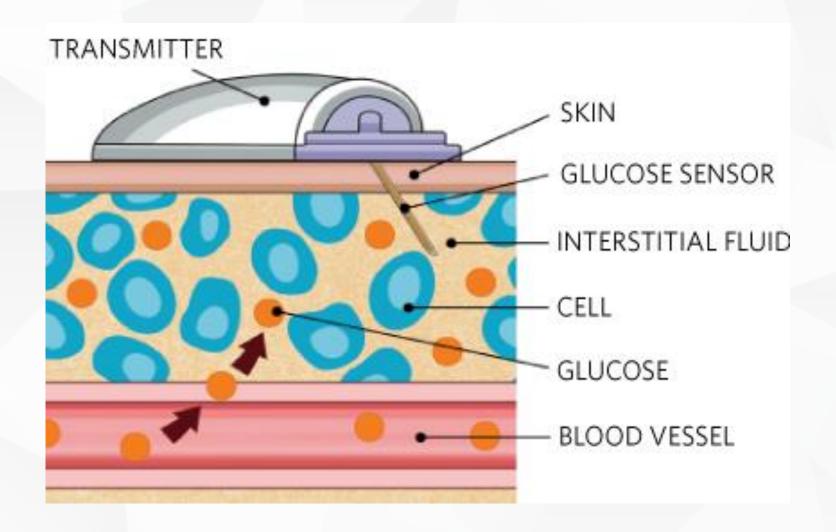

- 计算式

$$A = ln\left(\frac{I_0}{I}\right) = \varepsilon(\lambda)Cd = d\left[\varepsilon_{Hbo_2}(\lambda) \cdot c_{HbO_2} + \varepsilon_{HHb}(\lambda) \cdot c_{HHb}\right]$$

 \Rightarrow

$$SpO_2 = \frac{k_1 + k_2 R}{k_3 + k_4 R} \approx a + bR + cR^2$$
,其中 $R = \frac{PI_{RED}}{PI_{IR}} = \frac{AC_{RED}/DC_{RED}}{AC_{IR}/DC_{IR}}$ (校准系数 a 、 b 、 c 与系统光学的结构相关,可通过拟合得出)

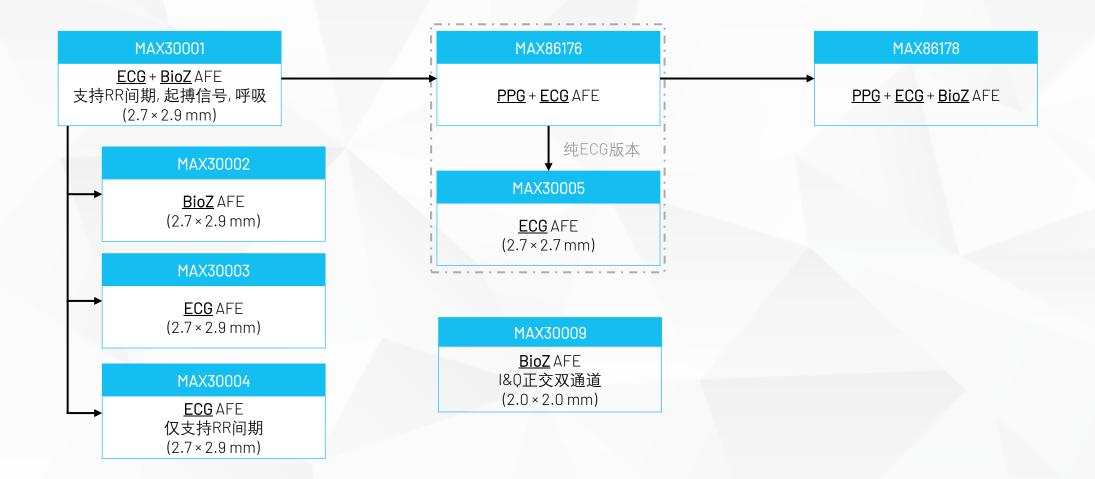

应用: 肺功能监测、缺氧状态监测


呼吸(Respiration)指的是每分钟呼吸的频率,呼吸会对 PPG信号进行调制,因此静息状态下PPG信号的基线(或包络)即为呼吸的特征曲线,其周期即为呼吸的周期

> 应用: 肺功能监测

体表温度测量原理

血糖测量原理



ADI生物电势传感器

AHEAD OF WHAT'S POSSIBLE™

ADI生物电势传感器

MAX30001/2/3/4/5比较

型号	MAX30001	MAX30002	MAX30003	MAX30004	MAX30005
功能	ECG + BioZ	仅BioZ	仅ECG	仅ECG (RR间期)	ECG
应用	心率/心率变异性、 RR间期、起搏信 号、呼吸	呼吸 心率/心率变异性 心率/心率变异性、 RR间期		心率/心率变异性、 RR间期	
RR间期检测算法	有	无	有	有	有
封装	30-WLP 2.7 × 2.7mm				
兼容性	N/A				
EV Kit	MAX30001EVSYS MAXREFDES101	Use MAX30001	MAXREFDES100	Use MAX30003	MAX30005EVKIT

MAX30001-单通道ECG BIOZ AFE

- 小尺寸
 - $28-TQFN 5 \times 5mm / 30-WLP 2.7 \times 2.9mm$
- 低功耗
 - 85μW (ECG) /158μW (BioZ) (1.1V供电电压)
- 高精度
 - 内置RR间期检测功能
- 医疗级
 - IEC60601-2-47
 - 专为动态心电图(Holter)和生命信号监测(VSM)应 用而设计

测量胸部和腕部的 ECG 和 BioZ 以检测心率、呼吸和心律失常

MAX30005 - 单通道ECGAFE

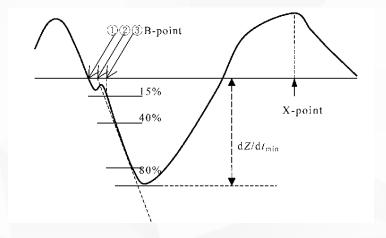
- MAX86176的纯ECG版本
- ・高精度
 - 高分辨率
 - 15.6 ENOBs (0.6μV_{RMS}噪声)
- 干电极测量
 - ECG和BioZ通道可共享电极
- 高CMRR
 - 130dB (右腿驱动, 电极匹配)
 - 106dB (右腿驱动, 电极失配)
- 高输入阻抗
 - 890Mohm (64Hz差模输入阻抗)
 - 2.9GΩ (64Hz共模输入阻抗)
- 交流导联脱落检测
 - 40至2800nA电流范围
 - 128Hz至16.384kHz频率范围

MAX30001/MAX30005比较

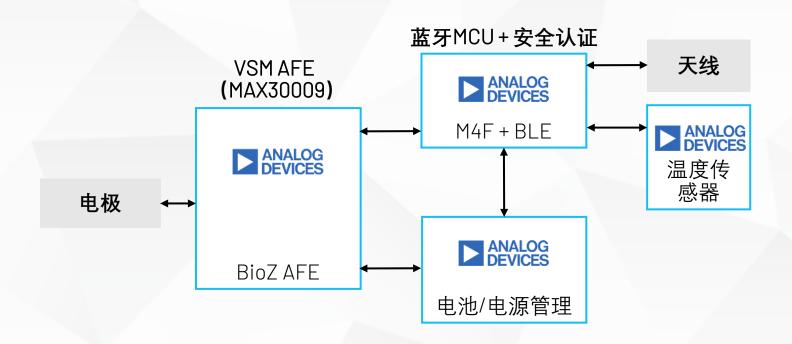
型号	MAX30001	MAX30005 (MAX86176纯ECG 版本)	
输入参考噪声	15.9 ENOB (0.05至40Hz, 20V/V)	15.6 ENOB (0.05至40Hz, 20V/V)	
差分交流/直流输入范围 (20V/V, 1.8V AVDD)	AC: 65mVpp; DC: ±1300mV	AC: 90mVpp; DC: ±1300mV	
输入阻抗	64Hz差模输入阻抗: 1.3GΩ	64Hz差模输入阻抗: 890MΩ	
制入や出力し	64Hz共模输入阻抗: 350MΩ	64Hz共模输入阻抗: 2.9GΩ	
CMRR	电极匹配: 115dB	电极匹配: 130dB	
*使用右腿驱动(RLD)	电极失配: 77dB	电极失配: 106dB	
THD	0.025%	0.06%	
导联脱落检测	直流	直流和交流	

MAX30009 - 双通道BIOZ AFE

• 可穿戴生物电阻抗解决方案


- 减小30%尺寸
- 减小62%功耗

• 特色

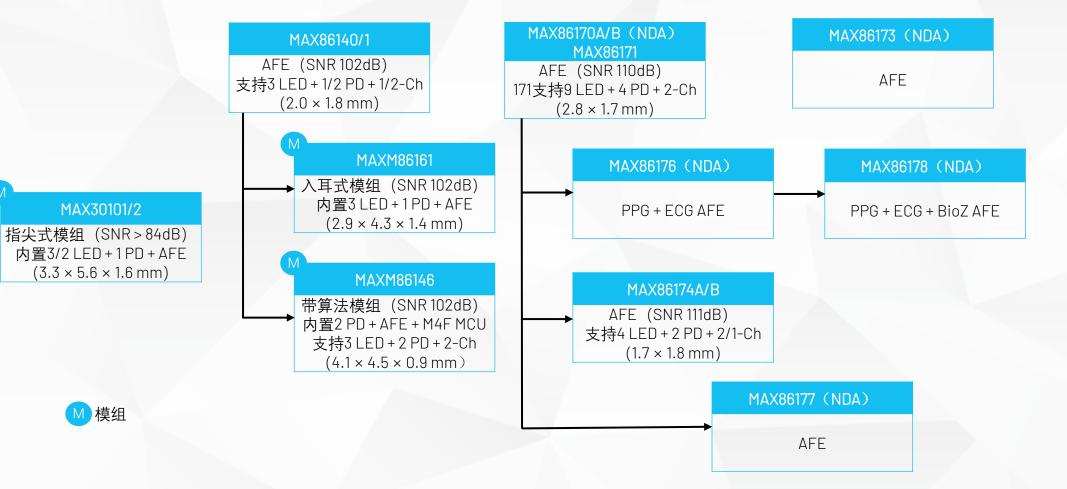

- 正交I/Q双通道同步测量
- 正弦波激励 (用于呼吸) 和方波激励 (用于GSR/BIS/ICG)
- 16sps至4ksps采样率
- 16Hz至806kHz激励频率
- 5×5 bump array WLP: 2.0mm $\times 2.0$ mm

应用

- 皮肤电反应/皮肤电分析 (GSR/EDA)
- 生物电阻抗分析/生物点阻抗谱 (BIA/BIS)
- 呼吸 (Respiration)
- 心阻抗图 (ICG)

VSM BIOZ系统设计 - MAX30009

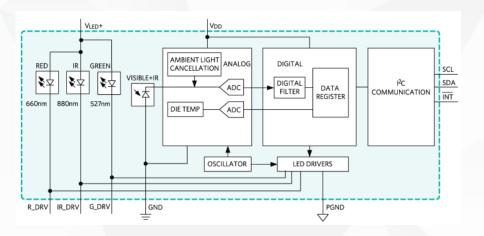
ADI光学传感器

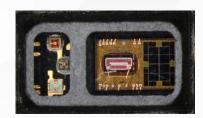


AHEAD OF WHAT'S POSSIBLE™

ADI光学传感器

MAX30101/2


M 模组

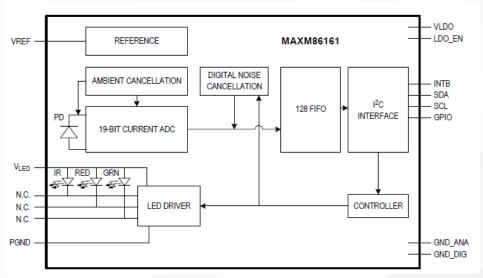


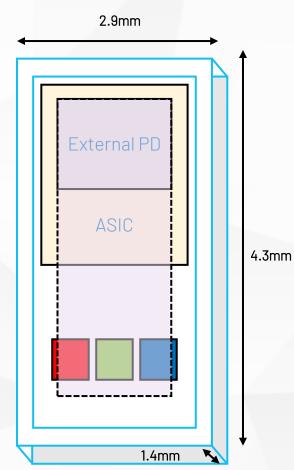
ADI光学传感器比较

型号	MAX30101/2	MAX86140/1	MAX861171	MAX86174A/B
SNR	>84dB	102dB	110dB	111dB
封装	14 OLGA	5 × 5 WLP	7 × 4 WLP	4 × 4 WLP
焊球间距	N/A	0.4mm	0.35mm	0.4mm
尺寸	$3.3 \times 5.6 \times 1.55$ mm	2.05 × 1.85 mm	2.77 × 1.70 mm	1.67 × 1.78 mm
接口	I2C	SPI	SPI/I2C	SPI/I2C
PD输入引脚数	1 (内置PD)	1/2	4	2
PPG通道数	1	1/2	2	2/1
LED驱动引脚数	3/2	3	9	4
LED驱动数	3/2	3	3	2
最大LED电流	50mA	124mA	2 × 128mA	2 × 128mA
LED DAC分辨率	8 bits	8 bits	8 bits	8 bits
ADC分辨率	18 bits	19 bits	20 bits	20 bits
时隙数	3	6	9	6
FIF0字长	32 words	128 words	256 words	256 words

MAX30101/2 - 3/2 LED1PD指尖式模组

MAX30101/2为 指尖式模组, 集成3/2个LED 和1个PD


优势


- 简化系统设计
- 全面支持资源
- 适用于指尖的HR和Sp02测量

特色

- MAX30101集成3个 (G, R, IR) LED和1个PD
- MAX30102集成2个 (R, IR) LED和1个PD
- 14-pin OLGA 3.3 × 5.6 × 1.55 mm模组
- 超低功耗 (<2mW)
- 多LED反射式解决方案

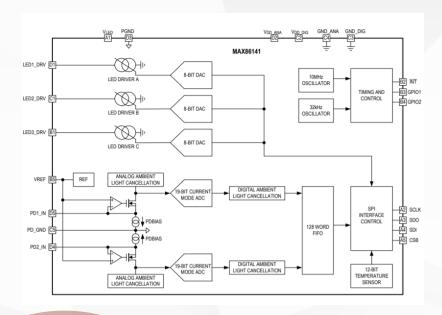
MAXM86161-3 LED 1 PD入耳式模组

优势

- 入耳式模组,专为耳带式智能设备设计
- 适用于耳部的HR和Sp02测量

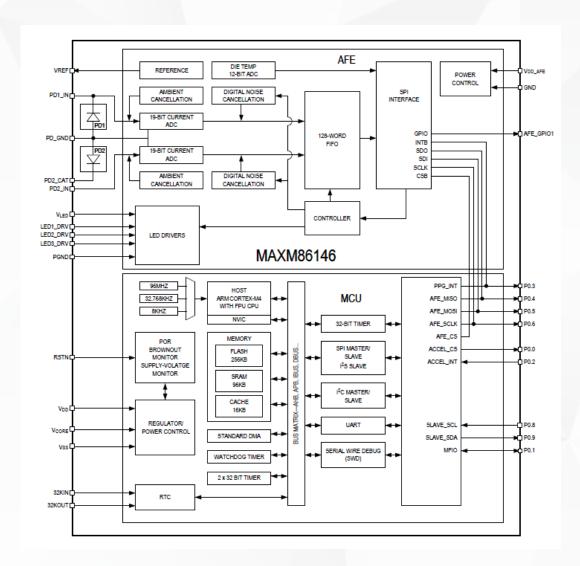
特色

- MAXM86161集成3个 (G, R, IR) 和1个 PD
- 1.6µA关断电流
- 14-pin OLGA 2.9 × 4.3 × 1.4 mm模组


MAX86140/1-3 LED驱动1/2 PD输入AFE

优势

- MAX86140有一个光学读出通道,而MAX86141有两个光学 读出通道
- 可用于腕部/腹部/指尖的透射式或者反射式HR和Sp02测量
- 通过多采样模式和片上平均功能可大大降低暗电流噪声


特色

- 集成高分辨率ADC
- 3个8位LED驱动低噪声DAC
- 动态范围可达Sp02>104dB, HRM>110dB

MAX86140/1为 适合腕部/腹部/ 指尖测量的AFE, 支持3个LED驱 动和1/2个PD输 入

MAXM86146 - 带算法光学模组

• 高度集成

- MAX86141双通道光学AFE
- MAX32664C Arm® Cortex®-M4传感器集中器
- 内置2个PD和2个PD输入
- 3个LED驱动

• 算法创新

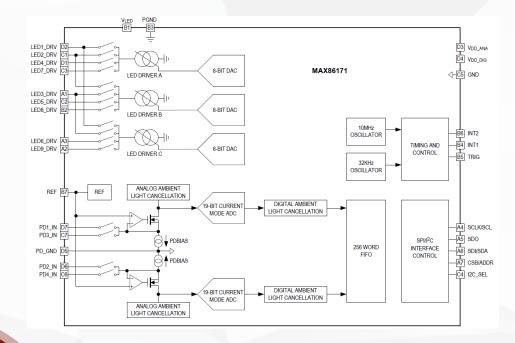
- HRM
- Sp02
- 运动状态
- 加速度 (需要外接G-sensor)

• 简便设计

- 减小产品上市时间约6个月
- 减小30%设计尺寸

MAXM86146 - 带算法光学模组

面积减小30% 厚度减小45%


MAX86171 - 9 LED驱动4 PD输入AFE

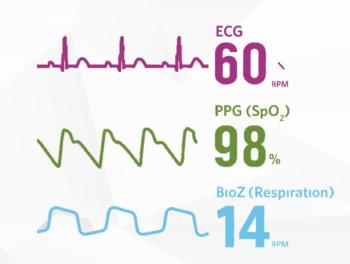
优势

- 超高信噪比AFE,适合腕部血氧测量和腹部/指尖/腕部的心率测量
- 超低功耗

特色

- 动态范围可达110 dB
- 环境光抑制达到70dB@120Hz
- 光学读出通道的功耗<11µA @ 25fps

MAX86171为适合腕部/腹部/指尖测量的AFE,支持9个LED驱动和4个PD输入


MAX86176 - PPG + ECG AFE

MAX86178 - PPG + ECG + BIOZ AFE

特色

- PPG通道
- ECG通道
- BioZ通道
 - 皮肤电反应/皮肤电分析 (GSR/EDA)
 - 生物电阻抗分析/生物电阻抗谱 (BIA/BIS)
 - 呼吸 (Respiration)
 - 心阻抗图 (ICG)
- 同步
 - PEP、PTT、PAT、PWV同步测量
 - 支持BPT、心博出量的计算

MAX86178 - PPG + ECG + BIOZ AFE

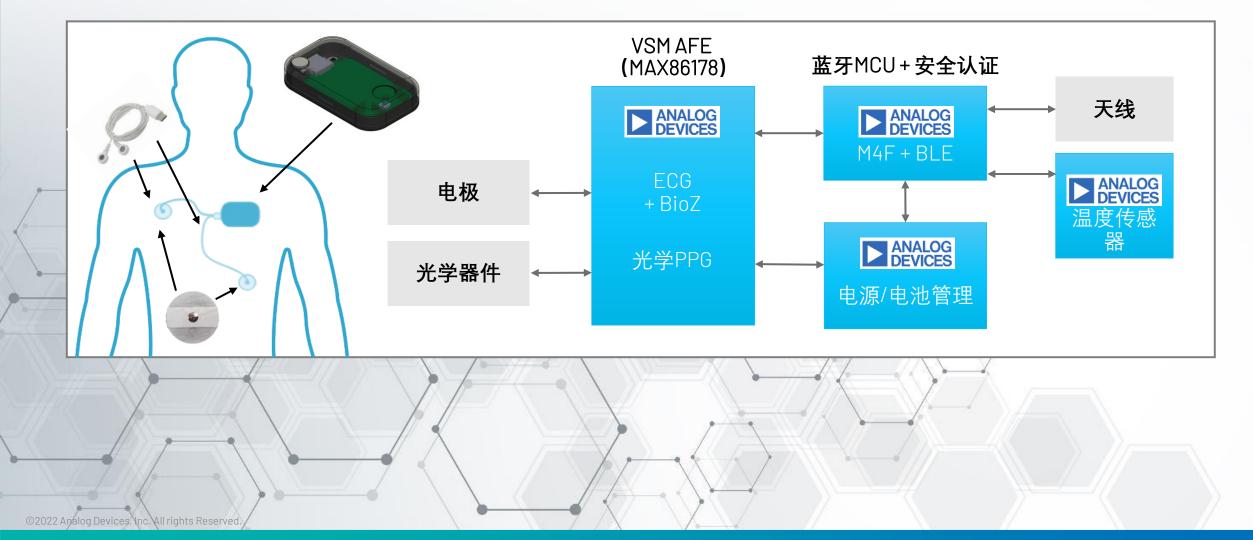
生命体征信号

用例

 SpO_2

血氧饱和度 (通过PPG) 肺功能分析 睡眠质量监测

呼吸 (通过BioZ或者PPG) 精神压力分析 睡眠状态监测


心率/心率变异性 (通过ECG或者PPG) 心功能分析 精神压力分析

心阻抗图 (通过ECG和BioZ) 心功能分析 房颤检测

VSM ECG BIOZ PPG系统设计 - MAX86178

ADI体表温度传感器

AHEAD OF WHAT'S POSSIBLE™

ADI体表温度传感器

型号	MAX30205	MAX30207	MAX30208	
供电电压	2.7 <u>至</u> 3.3V	1.7 <u>至</u> 3.6V	1.7 <u>至</u> 3.6V	
供电电流	600μΑ	67μΑ	67μΑ	
尺寸	$3.1 \times 3.1 \times 0.8 \text{ mm}$	$2 \times 2 \times 0.75 \mathrm{mm}$	$2 \times 2 \times 0.75 \mathrm{mm}$	
准确度	±0.1°C (37至39°C) ±0.5°C (0至50°C)	±0.1°C (30至50°C) ±0.15°C (0至70°C)	±0.1°C (30至50°C) ±0.15°C (0至70°C)	
分辨率	0.009°C	0.005°C	0.005°C	
热响应	NA	未焊接0.5s 已焊接3.5s	未焊接0.5s 已焊接3.5s	
测温方式	底部 (通过裸焊盘)	顶部 (通过Die)	顶部(通过Die)	
多地址功能	有	有	有	
接口	I2C	1-Wire	I2C	
身份识别码	无	64 位唯一I D	无	
ESD保护	±4kV HBM	±15kV Air, ±8kV Contact IEC 61000-4-2	±15kV Air, ±8kV Contact IEC 61000-4-2	
评估套件	MAX30205EVSYS	MAX30207EVSYS	MAX30208EVSYS	

MAX30207/8 - ±0.1°C准确度, 1-WIRE®/I2C数字体表温度传感器

• 高精度

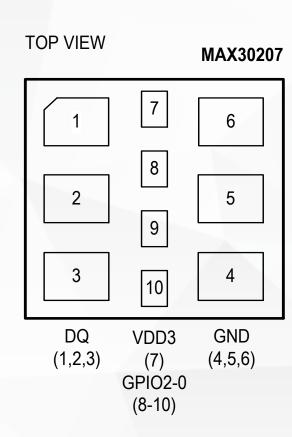
- 30°C至50°C: 准确度±0.1°C
- 0°C至70°C: 准确度±0.15°C
- 分辨率0.005°C

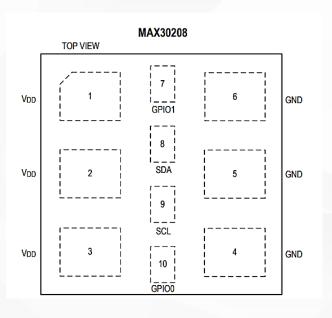
• 低功耗

- 1.7至3.6V的工作电压范围
- 67µA的工作电流
- 32字长的FIFO以便MCU更长时间地低功耗运行

• 安全性强

- 独一无二的64位识别身份码(仅MAX30207)
- 温度过高/过低报警

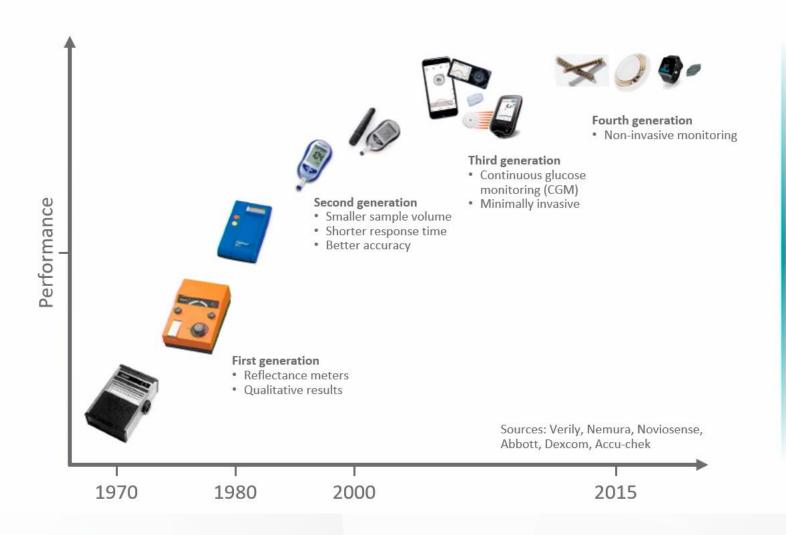

MAX30207/8 - ±0.1°C准确度, 1-WIRE®/I2C数字体表温度传感器


•接口易用

- 1-Wire®接口 (MAX30207)或 I2C 接口 (MAX30208)
- CRC校验功能 (仅MAX30207))
- 多地址选择功能
- ±15kV air, ±8kV contact IEC 61000-4-2 ESD

• 尺寸精简

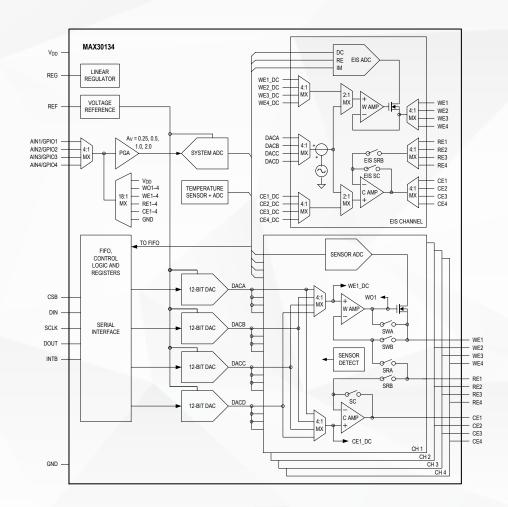
- Tiny 2 × 2 × 0.75 mm LGA 封装
- 大焊盘
- 支持柔性PCB



ADI电化学传感器

AHEAD OF WHAT'S POSSIBLE™

电化学传感器与血糖监测



MAX30131/2/4 - 1/2/4通道电化学AFE

高精度

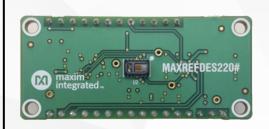
- 16位直流测量ADC,分辨率0.8pA至30pA
- 16位EIS测量ADC, 幅度误差±0.5%, 相位误差±0.5°
- 16位温度传感器, 误差±0.5℃
- 12位DAC
- 电化学阻抗谱测量 (EIS)
 - 0.014Hz至27kHz EIS频率测量范围
- 低功耗
 - 3.5µA偏置电流
- 封装与接口
 - $-2.9 \times 2.9 \,\mathrm{mm}$
 - 8MHz SPI接口
 - 可编程GPIO
 - 内置传感器检测电路

ADI生命体征解决方案

AHEAD OF WHAT'S POSSIBLE™

ADI生命体征解决方案

MAX-ECGMONITOR ECG



健康传感器平台 MAXREFDES100 ECG, PPG & 体表温度

健康传感器平台2.0 MAXREFDES101 ECG, PPG & 体表温度

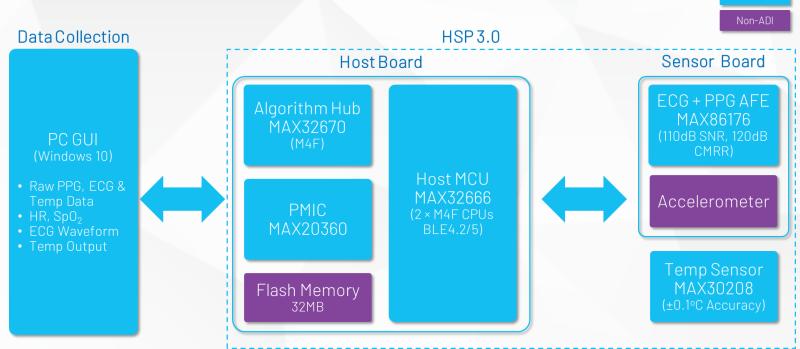
MAXREFDES220 PPG

健康传感器平台3.0 MAXREFDES104 ECG, PPG & 体表温度

ADI生命体征解决方案比较

型号	MAX- ECGMONITOR	MAX-HEALTH- BAND	MAXREFDES2 20	MAXREFDES10 0 (HSP)	MAXREFDES10 1 (HSP2.0)	MAXREFDES10 3	MAXREFDES10 4 (HSP3.0)	MAXREFDES10 5
核心器件	MAX30003	MAX86140	MAX30101	MAX30003 MAX30205	MAX30001 MAX86141 MAX30205	MAX86141	MAX86176 MAX30208	MAX86174A
PPG	×	✓	✓	✓	✓	✓	✓	✓
ECG	✓	×	×	✓	✓	×	✓	×
体表温度	✓	×	×	✓	✓	×	✓	×
心率	✓	✓	✓	✓	✓	✓	✓	✓
心率变异性	×	×	×	×	×	✓	✓	✓
血氧饱和度	×	×	✓	✓	×	✓	✓	✓
呼吸	×	×	×	×	×	✓	✓	✓
运动状态/热 量	×	✓	✓	×	×	✓	✓	✓
加速度	✓	✓	✓	✓	✓	✓	✓	✓
睡眠质量	×	×	×	×	×	✓	✓	✓
精神状态	×	×	×	×	×	✓	✓	✓
血压趋势	×	×	✓	×	×	×	✓	×
磁场	✓	×	×	×	×	×	×	×
大气压	×	×	×	✓	×	×	×	×
训练指导 ^{©2022 Analog Devices}	× , Inc. All rights Reserved	×	×	×	×	✓	✓	✓

ADI生命体征解决方案准确度


- 腕部血氧饱和度水平
- 专业实验室
- 20个被测对象

指标	FDA 要求	RMSE(%)
客户的解决方案	3.5%	2.69
ADI的解决方案	3.5%	3.11

MAXREFDES104 - 健康传感器平台3.0

- 驱动代码、BOM、GUI、Layout、原理图
- 部件
 - MAX86176 (6 LEDs+4 PD+ECG+AFE)
 - MAX32670/4 (带算法传感器集中器)
 - MAX32666 (主MCU)

HEALTH SENSOR PLATFORM 3.0 (MAXREFDES104#)

Reduce development time of healthcare wearables by at least 6 months

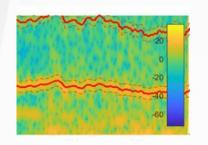
快速的市场响应

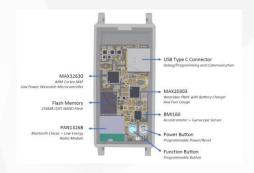
医疗级别的精度

完备的解决方案

全面的信号监控

缩短研发周期6个月


符合血氧饱和度和动态 心电图的标准要求 (IEC 60601-2-47) 驱动代码、BOM、GUI、 Layout、原理图 血氧饱和度、ECG、心 率、心率变异性、RR 间期、体温、运动状态、 血压趋势


生命体征解决方案设计要点

业界领先的传感器

- 高信噪比
- 低功耗
- 小尺寸
- 环境光抑制

性能优异的算法

- 信号调理与处理
- 功耗优化
- 自适应学习
- 集成于传感器集中器中

系统设计

- 光学结构拓扑设计
- 波长选择
- 串扰和噪声抑制
- 光学优化

参考设计

- 节省设计时间
- 拿来即用
- 全面的软硬件资源

A&Q

ADI中国技术支持中心 400-6100-006 cic.china@analog.com

谢谢大家

