深入学习运算放大器噪声以及ADI典型低噪声 放大器产品

MACNICA

陆聪lukelu

FAE信号链专家

lukelu@macnica.com

183-2162-9102

Confidential

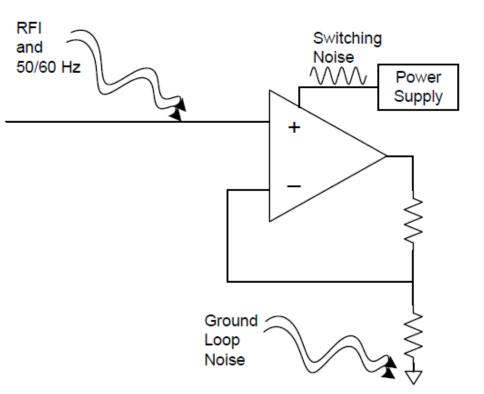
© Macnica, Inc.

Agenda

- Understand the main noise sources of amplifier circuits and how to find the corresponding noise parameters in an operational amplifier datasheet
- Understand the definition of each noise source and how to calculate the noise value in a real circuit
- How to use the simulation tool to quickly obtain the noise index of the amplifier circuit
- **Familiar with ADI's typical low noise amplifier products**

Where does noise come from?

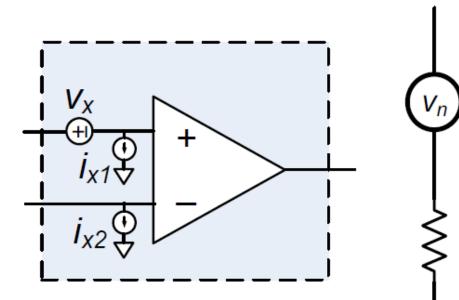
-Extrinsic -Intrinsic MACNICA


Extrinsic Noise

 Noise coupling in from external sources

Examples

- RFI Coupling
- Power Supply Noise
- Ground loops
 - Digital circuitry
 - ♦ 50/60 Hz


Not focus of this talk

Intrinsic Noise

Intrinsic

- Internal noise from components in signal chain
 - Sensor
 - Resistors
 - Amplifier
 - A/D
- Specified on the datasheet
- Focus of this talk

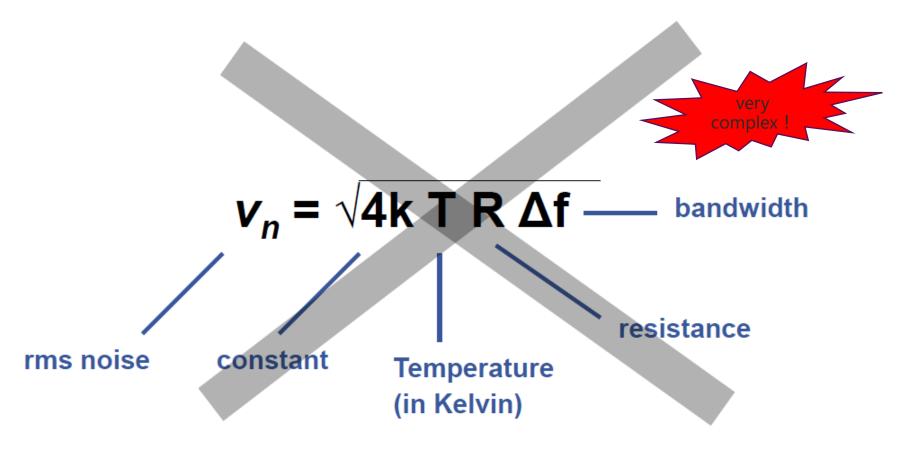
Main Sources of AMP Intrinsic Noise

-Resistor -Amplifier

MACNICA

Confidential

6


Resistor noise

 V_n .

7

Thermal noise of an ideal resistor

Resistor noise shortcut

1 kΩ→ 4 nV/ $\sqrt{(Hz)}$

Noise scales as square root of resistance $4 \text{ k}\Omega \rightarrow (2)(4) \text{ nV}/\sqrt{(\text{Hz})} = 8 \text{ nV}/\sqrt{(\text{Hz})}$ $9 \text{ k}\Omega \rightarrow (3)(4) \text{ nV}/\sqrt{(\text{Hz})} = 12 \text{ nV}/\sqrt{(\text{Hz})}$ $16 \text{ k}\Omega \rightarrow (4)(4) \text{ nV}/\sqrt{(\text{Hz})} = 16 \text{ nV}/\sqrt{(\text{Hz})}$ $100 \text{ k}\Omega \rightarrow (10)(4) \text{ nV}/\sqrt{(\text{Hz})} = 40 \text{ nV}/\sqrt{(\text{Hz})}$

Noise Spectral Density vs. Resistance

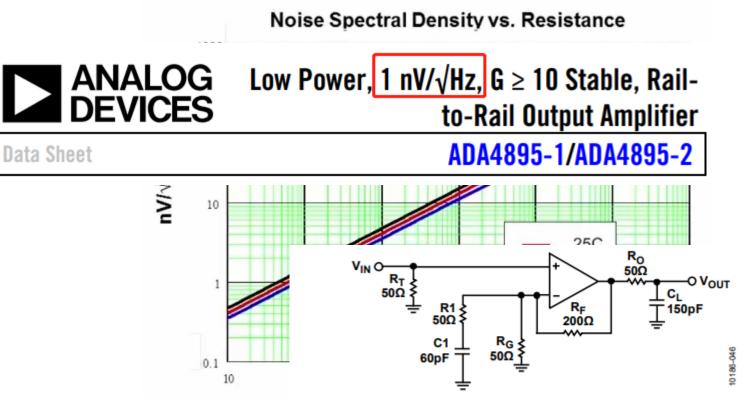
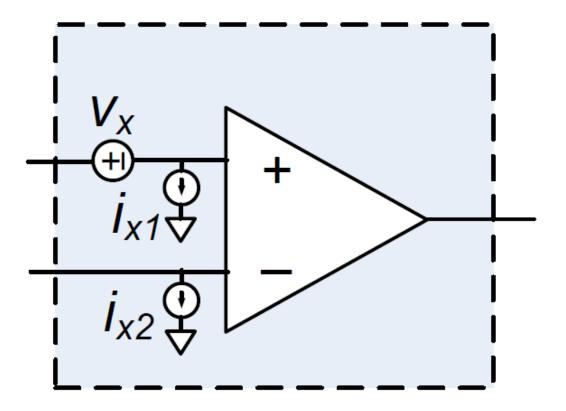
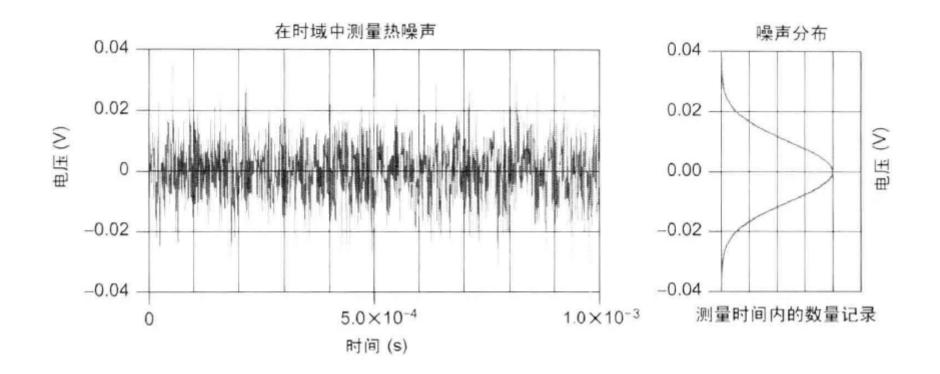
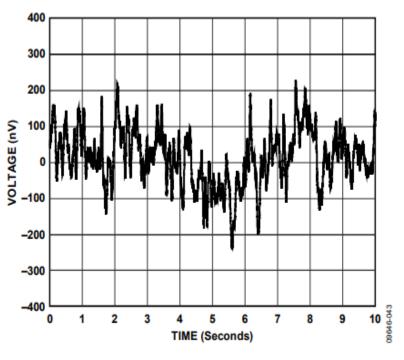
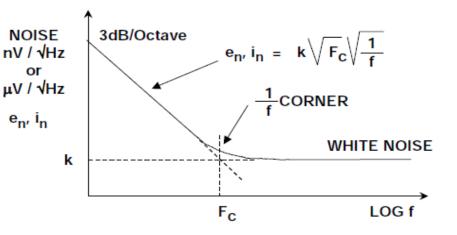



Figure 50. Configuring the ADA4895-1/ADA4895-2 for a Gain of +5 Stable



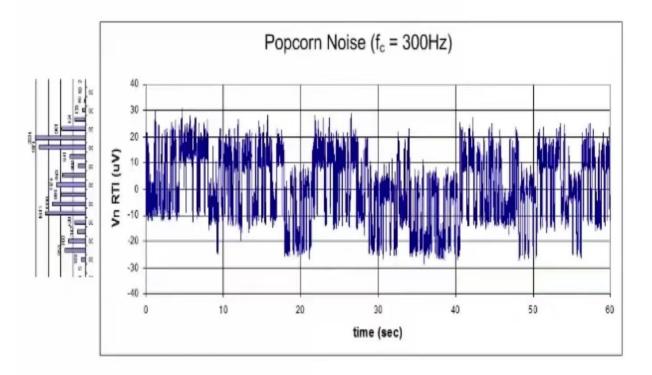
Amplifier Noise model


Broadband Noise

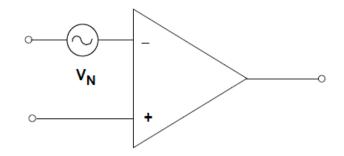

macnica

Confidential

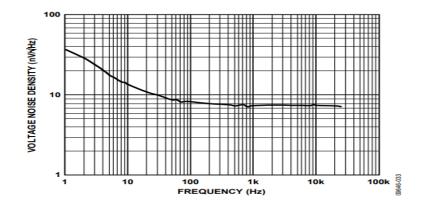
1/f Noise



ADA4610-1Voltage Noise Density 0.1 Hz to 10 Hz


- 1/f Corner Frequency is a figure of merit for op amp noise performance (the lower the better)
- Typical Ranges: 2Hz to 2kHz
- Voltage Noise and Current Noise do not necessarily have the same 1/f corner frequency

Burst Noise



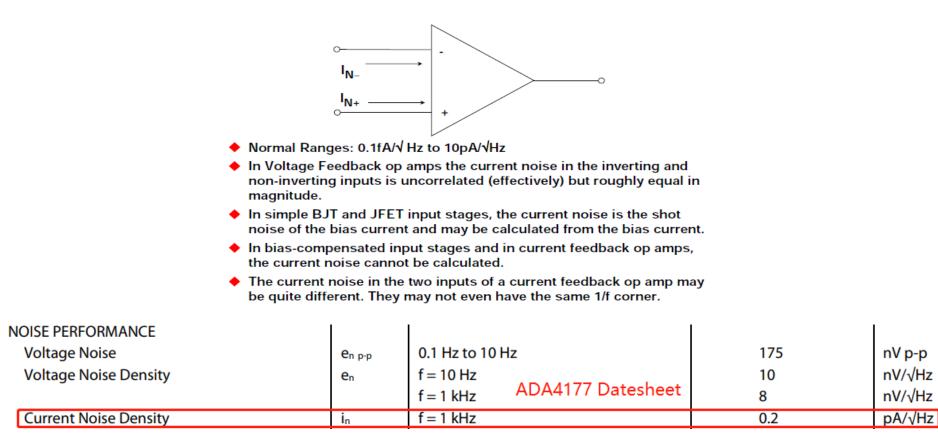
Input Voltage Noise

- Input Voltage Noise is bandwidth dependent and measured in nV/√Hz (noise spectral density)
- ♦ Normal Ranges are 1nV/√ Hz to 20nV/√Hz

ADA4610-1Voltage Noise Density vs. Frequency, VSY = ±5 V

NOISE PERFORMANCE

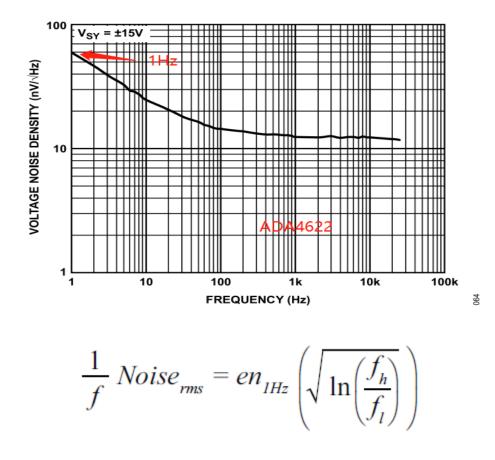
Peak-to-Peak Voltage Noise Voltage Noise Density

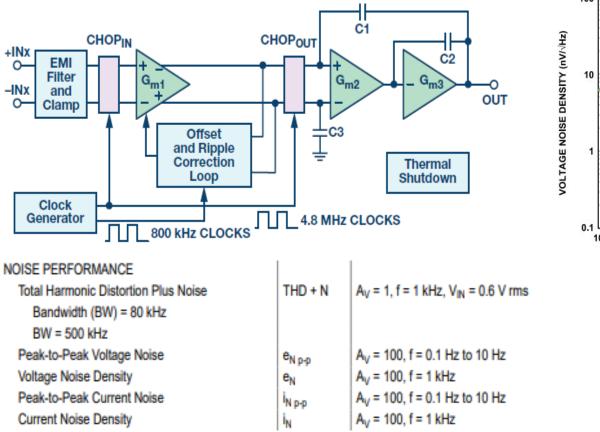

en p-p	0.1 Hz to 10 Hz bandwidth	0.45	μV p-p
en	f = 10 Hz	14	µV p-p nV/√Hz
	f = 100 Hz	8.50	nV/√Hz
	f = 1 kHz	7.30	nV/√Hz nV/√Hz
	f = 10 kHz	7.30	nV/√Hz

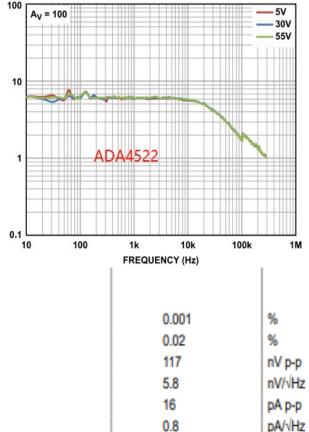
macnica

1

15

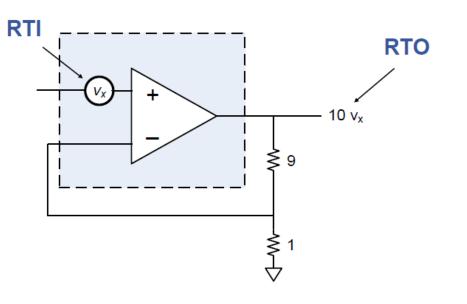

Input Current Noise


macnica

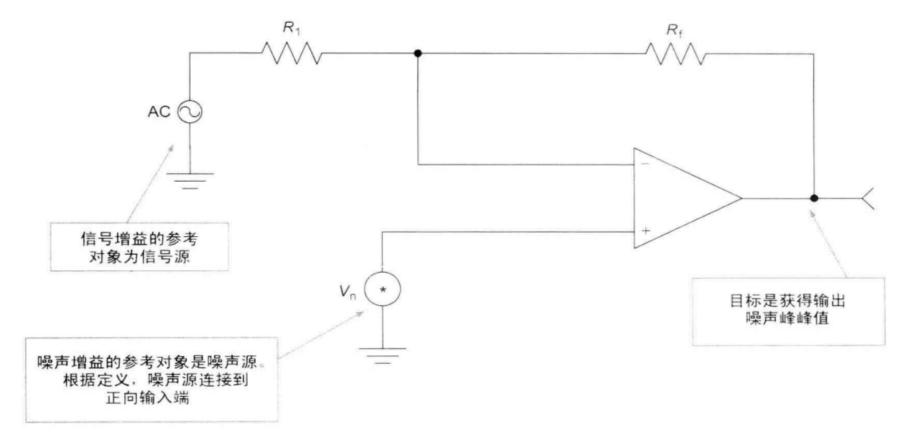

16

1/f Noise How to calculate?

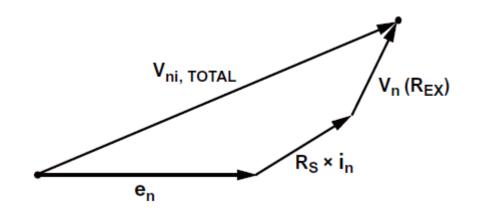
How to deal with 1/f Noise


macnica

88

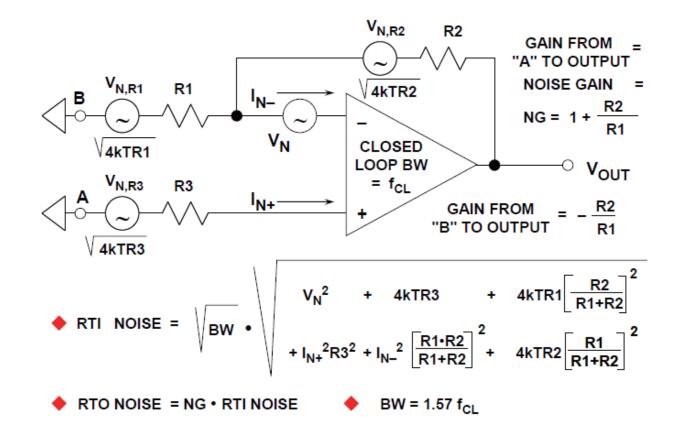

RTI RTO

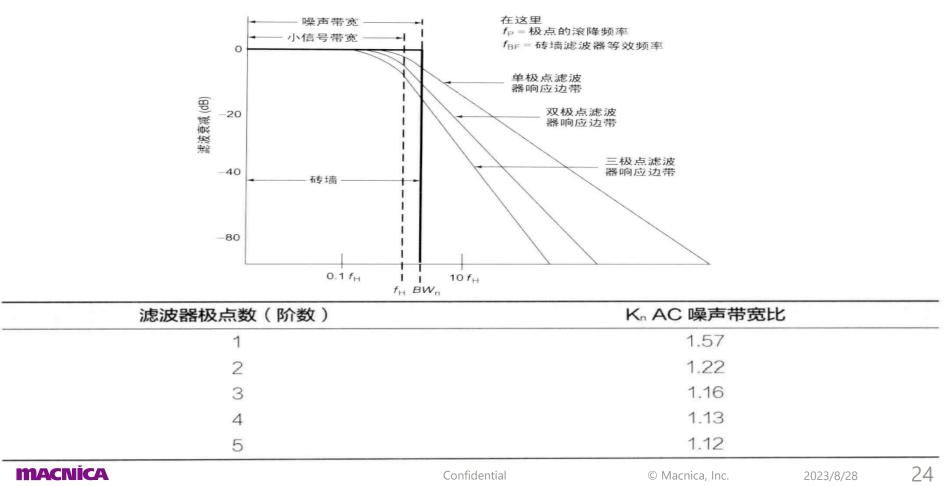
Options


- Referred to Input (RTI)
- Referred to Output (RTO)
- If not stated, referred to Input

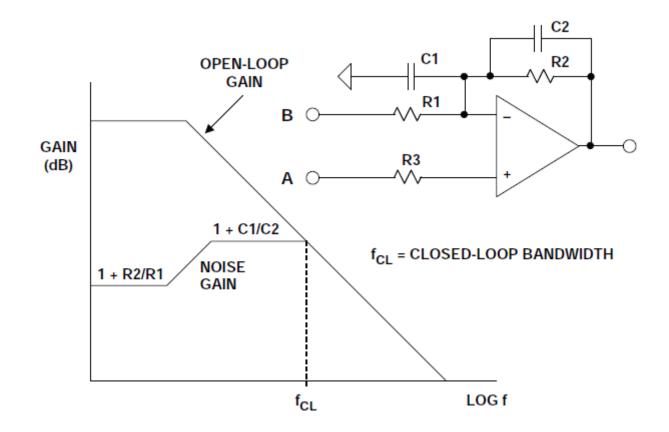
Noise Gain

Total noise


$$V_{ni,TOTAL} = \sqrt{(e_n)^2 + (R_S \times i_n)^2 + V_n(R_{EX})^2}$$

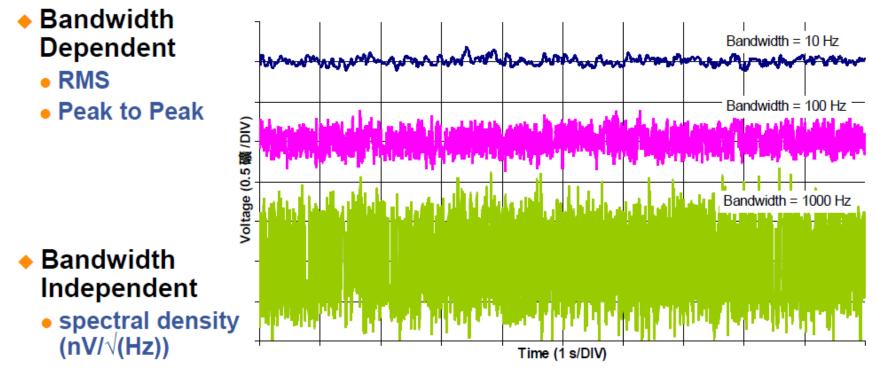

Main noise

EXAMPLE: OP27 VALUES OF R CONTRIBUTION Voltage Noise = 3nV / √ Hz FROM Current Noise = 1pA / √ Hz 0 3kΩ 300kΩ T = 25°C AMPLIFIER 3 3 3 VOLTAGE NOISE + AMPLIFIER CURRENT NOISE 0 **OP27** 3 300 R FLOWING IN R JOHNSON 0 7 70 NOISE OF R R2 R1 RTI NOISE (nV / √ Hz) Neglect R1 and R2 Dominant Noise Source is Highlighted Noise Contribution


Amplifier noise model for monopole point system

Noise bandwidth

Noise gain determines stability

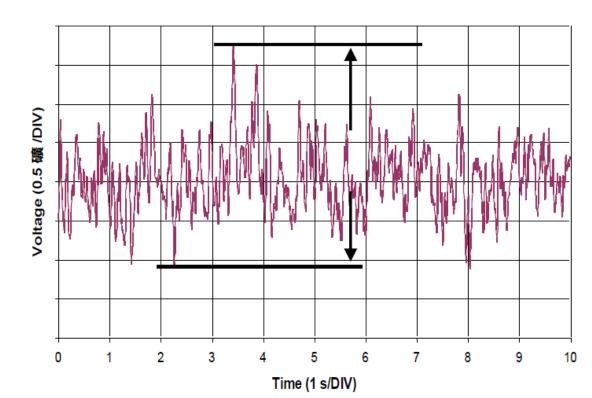


Why so many units? -nV/ \sqrt{Hz} , μ Vrms, μ V p-p -converting between units

MACNICA

Noise depends on bandwidth

AD8222 Noise (G=100)


What's quick to measure?

- Peak to peak noise
 - Can see on oscilloscope

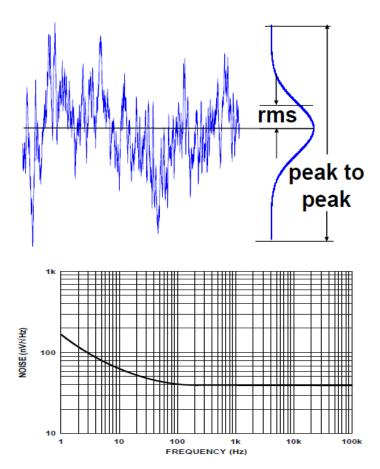
RMS noise

- Sometimes with oscilloscope
- DMM (watch bandwidth)
- Spectral Density (nV/√Hz)

 Spectrum Analyzer

AD8222 G=100, BW=10 Hz

macnica


Confidential

What's accurate?

- Peak to peak noise
 - Depends on two points (outliers)

RMS noise

- Depends on all points in waveform
- Spectral Density (nV/√Hz)
 - Depends on all points in waveform
 - Sorts information by frequency band

How to convert

Conversion process

- nV/ $\sqrt{(Hz)} \rightarrow \mu Vrms$
- $\mu Vrms \rightarrow \mu Vp$ -p

nV/√(Hz) --> μ Vrms

Equation

- spectral density * √(bandwidth) = RMS noise
 - when 1/f corner << bandwidth

Note: Use equivalent noise bandwidth of filter

- Noise BW of a filter is always greater than the 3dB BW
- Brick wall: 1

Equivalent Noise bandwidth for Butterworth filters

- 1 pole: ×1.57
- 2 pole: × 1.11
- 3 pole: × 1.05

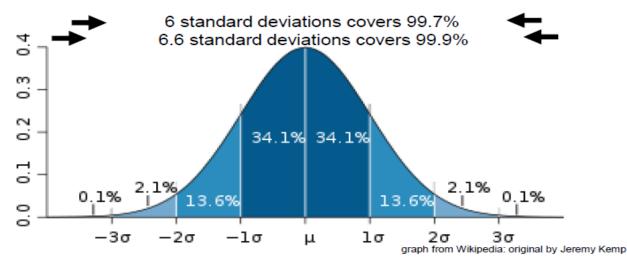
Example:

- Given:
 - 40 nV/rt(Hz)
 - 1 kHz 1 pole filter

NUMBER OF POLES	NOISE BW / 3dB BW
1	1.57
2	1.11
3	1.05
4	1.03
5	1.02

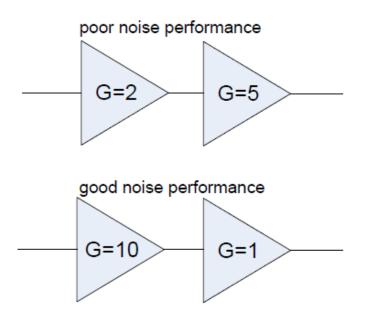
• Answer:

40 nV/rt(Hz) * sqrt(1000 Hz * 1.57) ≈ 1600 nVrms = 1.6 μVrms


macnica

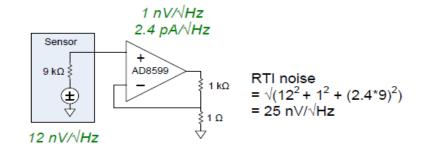
Confidential

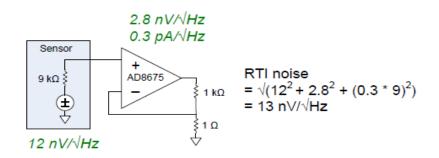
μVrms -> μVp-p


To get peak to peak noise

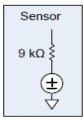
- In theory: peak to peak noise infinite
- In practice: multiply rms by 6
 - Multiplier of '6' is rule of thumb: 99.73% of points
- Example
 - 1 µVrms * 6 ≈ 6 µVp-p

Noise Tip #1: Apply Gain Early


- Noise adds as sum of squares
- Apply all the gain in the 1st stage
- Example: Assuming the noise of amplifier is 1
 - Noise for the circuit above:
 - $\sqrt{(1 \times 2)^2 + 1^2 \times 5} = 5\sqrt{5} = 11.180$
 - Noise for the circuit below: $\sqrt{(1 \times 10)^2 + 1^2} \times 1 = \sqrt{101} = 10.049$



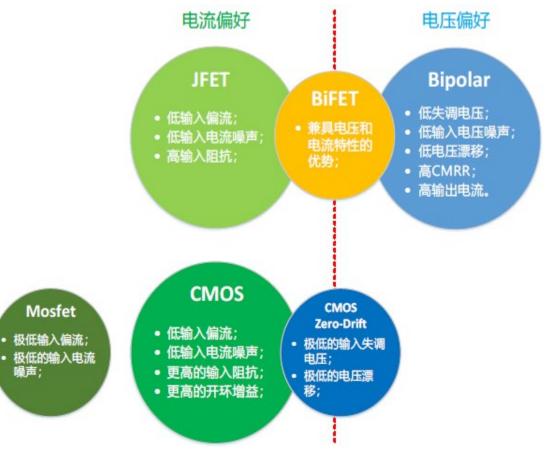
Noise Tip #2: Watch out for source impedance


- Source Resistance adds noise
- Current noise calculation

Example

Given the following sensor

• Which op amp is the best?


mac

Noise Tip #3:CMOS JFET or Bipolar?

- Bipolar工艺经典运放: 早年的 OP27, OP07D, OP177, AD797, AD706 现今的 AD8672, ADA4075, ADA4004 ADA4077, ADA4177 ► JFET工艺经典运放: AD549, AD823, AD795 ► BiFET是工艺的融合, 经典运放: 早年的 AD712, AD744 现今的 ADA4610, ADA4622, ADA4625 ► CMOS需较低电源供电,经典运放: AD8662, AD8602 COMS型的Zero-Drift 经典运放: AD8629, AD8628, AD8639, AD8638 ADA4522(最大55V供电), ADA4528 LTC2057/58HV(最大供电60V)
- ► MOSFET型经典运放: ADA4530-1 (Ibias<1fA), LTC6268-10

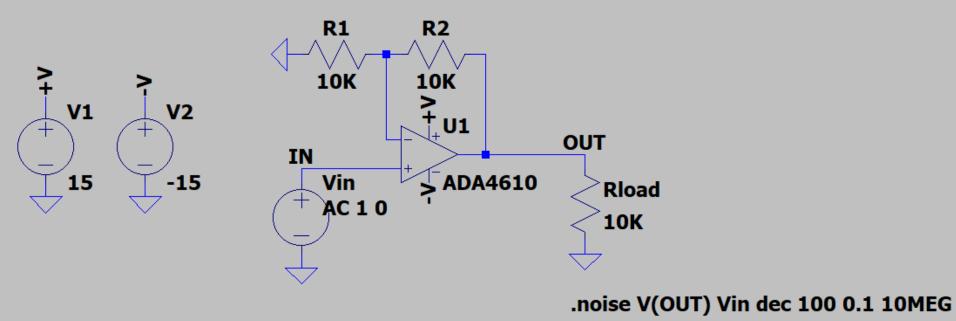
MACNICA

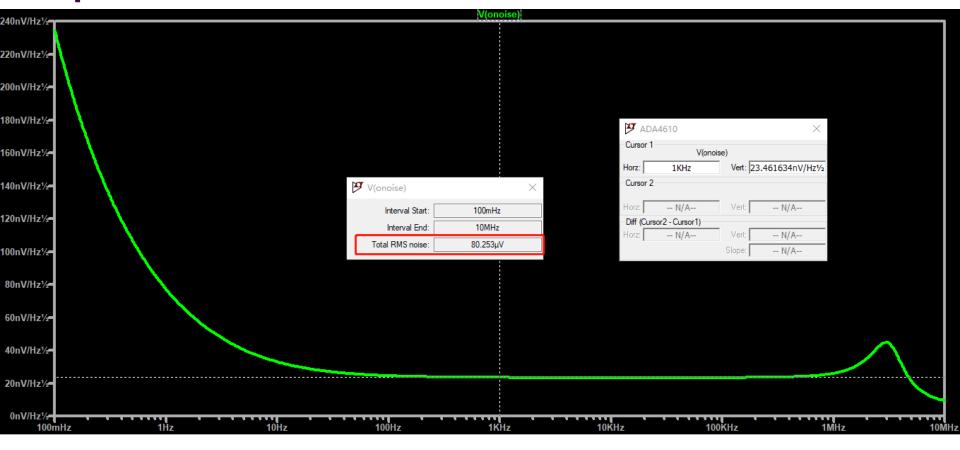
噪声;

Noise Tip #4:Noise measurement

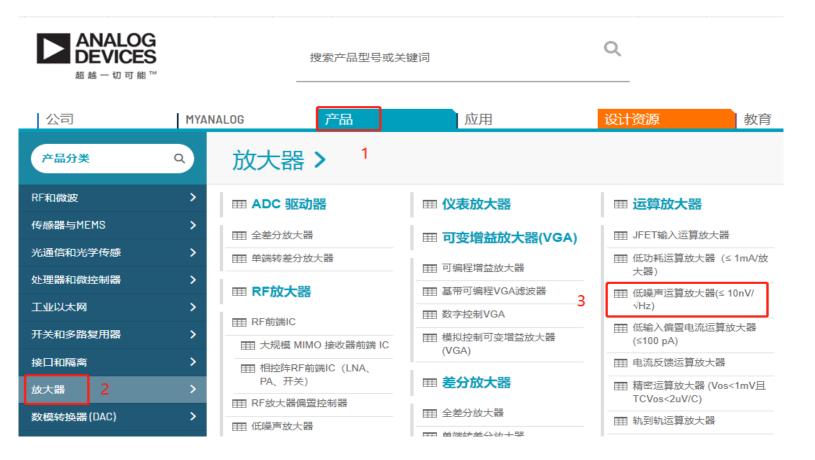
- <u>Do not</u> use 10x probes for low noise measurements
- Use direct BNC cable connection (10x better noise floor)
- Use male BNC shorting cap to measure noise floor of oscilloscope
- · Use bandwidth limiting (if appropriate)
- Use digital scope in dc coupling mode for 1/f noise measurements (ac coupling has a 60Hz high pass filter)
- Use ac coupling for broadband measurements (if necessary)

Noise Tip #5:How to Reduce Noise ?


- Select a low noise amplifier
 - Consider both current and voltage noise
 - Consider low and high frequency noise
- · Select the appropriate feedback resistors
 - Low resistance for low noise
- · Limit the system bandwidth


Confidential

LTspice LTspice Simulator | 亚德诺半导体 (analog.com)



LTspice LTspice Simulator | 亚德诺半导体 (analog.com)

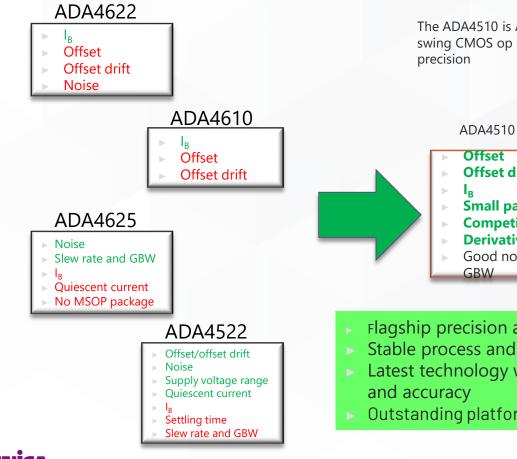
macnica

ADI Typical Low Noise Amplifier


ADA4510: 40 V, 70 nV/°C, Low VOS, Low IB, Low Noise RRIO Op Amp

Key Features

- V_{os} drift (TCV_{os}): **70 nV/°C** typ., **0.5 μV/°C** max at 0°C to 85°C
- V_{os}: ±20 μV max at 25°C
- 1/f noise: 1 µV p-p typ. from 0.1 Hz to 10 Hz
- ▶ Noise density: **5 nV/√Hz** typ. at 1 kHz
- Gain Bandwidth Product (GBP): **10.4 MHz** typ.
- Slew rate: 19 V/µs typ.
- Input bias current: 10 pA max 25°C
- Low THD: -134 dB at 1 kHz
- Capacitive load drive capability: 1 nF
- Integrated EMI

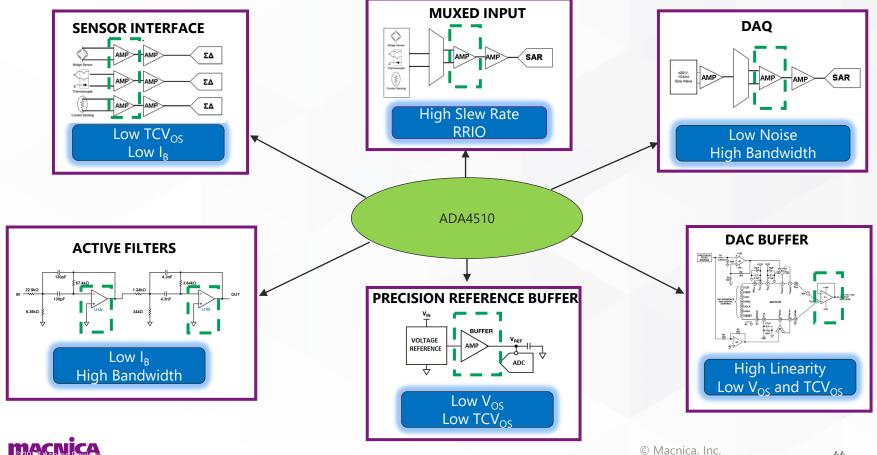

Key Applications

- Automated test and measurements
- Data acquisition systems
- Multiplexed-input signal chains
- Electronics test and measurements

ADA4510: Portfolio Positioning

mac

The ADA4510 is Analog Devices' latest high input swing CMOS op amp part with the best overall


- Flagship precision amplifier product
- Stable process and reusable IP for future derivatives
- Latest technology with the top reliability, durability,
- Outstanding platform amplifier

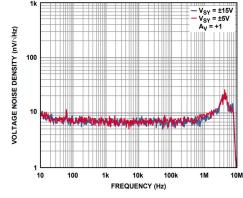
ADA4510: 40 V, ±70 nV/°C, Low VOS, Low Noise RRIO Op Amp

Features	Benefits
 Excellent DC operational range Supply voltage range: ±3 V to ±20 V Rail to rail inputs and outputs -40°C to +125°C operation 	Easily allows user to upgrade performance and accuracy to any system architecture by offering an extensive operating range in supply voltage, input/output voltage, and temperature range Wide applicability
 Low offset voltage 20 µV max at 25°C 	Improves system DC accuracy; also improves system dynamic range by allowing smaller signals to be sensed at the input
 Low offset voltage drift 70 nV/°C, typ., 0.5 μV/°C max at 0°C to 85°C 	Enables stability and precision at temperature, eliminating need for calibration
 Low input bias current 10 pA max at 25°C 	 Suitable as a sensor interface amplifier for high impedance sensors such as photodiodes, piezoelectric, pH cell, etc.
Low noise ■ 1 µV p-p typical at 0.1 Hz to 10 Hz ■ 5 nV/√Hz typical at f = 1 kHz	Enables high resolution sensor interface solution
 High slew rate and fast settling time 19 V/µs 	Dynamic specs enable higher measurement throughput for increased sample rate in data acquisition systems
 Low THD, high cap load drive capability, and fast settling 	Enable driving the ADC directly without ADC driver Minimized distortion
Integrated EMI filter	Makes the end solution more robust in harsh RF environments by rejecting high frequency signals before they reach the amplifier's sensitive inputs
MACRIÍCA	

MACNÍCA

Typical Applications

M


ADA4077-1/ADA4077-2/ADA4077-4: 36 V, 4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Amplifier

- 5th generation of the successful OP77 and OPx177 family amplifiers
- Reduced offset and drift with a low noise system provide improved system accuracy as well as bandwidth
- BiPolar[®] technology to improve power efficiency and increase the system bandwidth for higher speed applications

Key Benefits

- Low noise improves precision in high resolution systems
- Combination of precision specifications eliminates the need for design trade-offs
- Rated for the highest industrial environmental and manufacturing specifications required for demanding applications

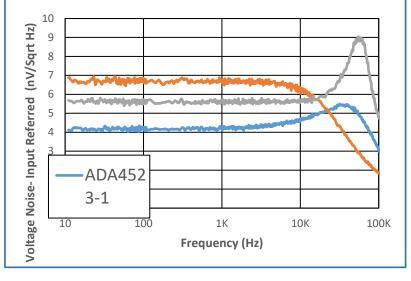
Part Number	Bandwi dth GBP (typ)	Slew Rate (typ)	V _{NOISE} Density (typ)	V _{os} (max)	V _{os} Tempco (typ)	V _{os} Tempco (max)
ADA4077-2 B Grade*	3.9 MHz	1 V/µs	7 nV/rtHz	25 µV	100 nV/°C	250 nV/°C
OP2177	1.3 MHz	0.700 V/µs	7.9 nV/rtHz	75 µV	200 nV/°C	700 nV/°C
B Grade Improvem ent over OP2177	200%	43%	11%	67%	50%	64 %

Voltage Noise Density vs. Frequency, $V_{SY} = \pm 5 V$ and $V_{SY} = \pm 15 V$

macnica

ADA4523-1: 36V Single Op-Amp, The Lowest Noise Zero-Drift Amp

Key Features:


- No other Zero-Drift Amplifier can provide the ultra-low noise performance of the ADA4523-1 at 4.2nV/\Hz @ 1kHz typ
- Integrated voltage noise over the entire bandwidth is reduced 25%, while still increasing the usable bandwidth

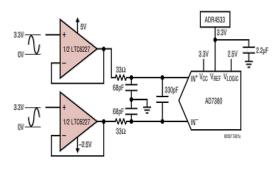
Key Benefits:

- Improves system dynamic range at lower frequencies, allowing smaller signals to be sensed at the input
- Eliminates the need for expensive temperature calibrations by self-correcting offset errors
- Allows lower noise at total power consumption with the shutdown feature

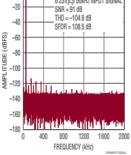
Voltage Noise Density (nV/SqrtHz) Gain=100, Vs=+/-15V

macnica

LTC6226/LTC6227: Single and Dual, Low Noise, High Speed, (420MHz) High Slew Rate Low Distortion Rail-to-Rail Output Op Amps with Shutdown A Transparent ADC Driver:


- > ADC Drivers should be "transparent" in the signal chain their presence should not influence the signal being digitized
- The LTC6226/6227 are transparent ADC drivers minimizing their footprint within the signal path by offering low noise, low distortion and high speeds complementing the faster LTC6228/6229 offering

Key Specs:

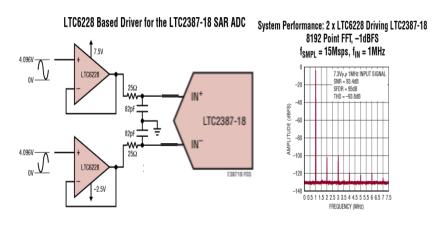

- > Ultra Low Voltage Noise: 1.0nV/\Hz
- > Low Distortion at High Speeds:
- > HD2/HD3 < -90dBc (Av = +1, 4VP-P, 2MHz, RL = 1k Ω)
- > High Speed: 420MHz GBW, 180V/µs Slew Rate
- > -3dB Frequency (AV = +1): 330MHz
- Supply Range: 2.8V to 11.75V MACNICA

TYPICAL APPLICATION

High Performance Transparent LTC6227 Based Driver for the 16-Bit AD7380

16-Bit ADC Driver Performance Input Signal = -0.5dBFS $f_{SMPL} = 4Msps, f_{IN} = 50KHz$

Confidential


LTC6228/LTC6229: ±5V Low Noise, High Speed, (890MHz) High Slew Rate, Low Distortion, Rail-to-Rail Output Amps

A Transparent ADC Driver:

- > ADC Drivers should be "transparent" in the signal chain their presence should not influence the signal being digitized
- The LTC6228/6229 are transparent ADC drivers minimizing their footprint within the signal path by offering low noise, low distortion and high speeds

Key Specs:

- > Ultra Low Voltage Noise: 0.88nV/√Hz
- > Low Distortion at High Speeds:
 - HD2/HD3 < -100dBc (Av = +1, 4VP-P, 2MHz, RL = 1kΩ)
- > High Speed: 890MHz GBW, 500V/µs Slew Rate
- > -3dB Frequency (AV = +1): 730MHz

macnica

Confidential

ADA4610-1/-2/-4 Low Noise, Precision, Rail-to-Rail Output, JFET Op Amps

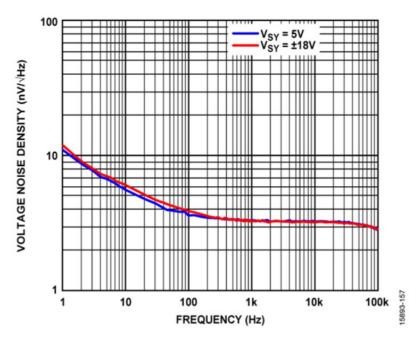
Features and specifications

- ADA4610-1: single-channel in SOIC and 5-lead SOT-23
- ADA4610-2: dual-channel in 8-lead MSOP and 8-lead LFCSP
- ADA4610-4: quad-channel in 14-lead SOIC and 16-lead LFCSP
- Low offset voltage
 - B grade: 0.4 mV maximum (ADA4610-2 only)
 - A grade: 1 mV maximum
- Low offset voltage drift
 - B grade: 4 μV/°C maximum (ADA4610-2 only)
 - A grade: 8 μV/°C maximum
- Low input bias current: 5 pA typical
- Dual-supply operation: ±5 V to ±15 V
- Low voltage noise: 0.45 μV p-p at 0.1 Hz to 10 Hz
- ► Voltage noise density: 7.3 nV/√Hz at f = 1 kHz
- ▶ Low distortion (THD + noise): 0.00006%
- No phase reversal
- Rail-to-rail output unity-gain stable

Portfolio Positioning

- ADA4610-1 replaces AD8510 pin-compatible
- ADA4610-2 replaces AD8512 pin-compatible
- ADA4610-4 replaces AD8513 pin-compatible
- The ADA4610-x is significantly better in more than seven key specifications, including input bias current, voltage noise, noise density, distortions, rail-to-rail output, and is less expensive

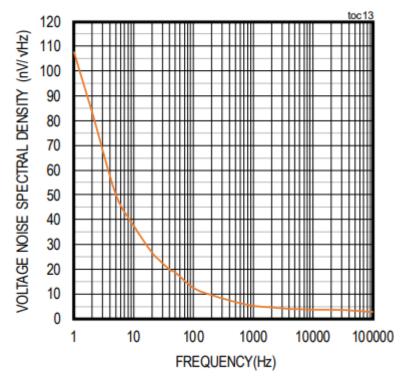
Competitive Positioning


Provides as much as 2× higher bandwidth and 25% better slew rate than the competition while consuming 2.6× less current

ADA4625: 36 V, 18 MHz, low noise, fast stable single power supply, RRO, JFET operational amplifier

Confidential

Features and specifications


- Wide gain bandwidth product: 18 MHz (typical value)
- High voltage swing rate: 48 V/μs (typical value)
- Low voltage noise density: 3.3nV /VHz at 1 kHz (typical value)
- Low peak noise: 0.15 μV p-p, 0.1 Hz to 10 Hz
- Low input bias current: ± 15 pA at TA = 25° C (typical value)
- ► Low offset voltage: $\pm 80 \,\mu\text{V}$ at TA = 25°C (Max)
- Offset voltage drift: $\pm 1.2\mu V$ /°C at TA = -40°C to 85°C (Max)

MAX40078: wide band, low-noise, low-input bias current operationa amplifier

Features and specifications

- Low Input Voltage Noise Density: 4.2nV/vHz at 30KHz
- Low Input Current Noise Density: 0.5fA/VHz
- Low Input Bias Current: 0.3pA (typ)
- ► Low Distortion: 0.00035% or -109dB THD+N (1kΩ
- Load)
- Single-Supply Operation from +2.7V to +5.5V
- Input Common-Mode Voltage Range Includes Ground
- Rail-to-Rail Output Swings with a 1kΩ Load

VOLTAGE NOISE DENSITY vs. FREQUENCY

QA

MACNICA

Confidential

© Macnica, Ir

2023/8/28

MACNICA